Comparative Evaluation of Moving Shadow Detection Algorithms
نویسندگان
چکیده
Moving shadows need careful consideration in the development of robust dynamic scene analysis systems. Moving shadow detection is critical for accurate object detection in video streams, since shadow points are often misclassified as object points causing errors in segmentation and tracking. Many algorithms have been proposed in the literature that deal with shadows. However, a comparative evaluation of the existing approaches is still lacking. In this paper, the full range of problems underlying the shadow detection are identified and discussed. We present a comprehensive survey of moving shadow detection approaches. We organize contributions reported in the literature in four classes. We also present a comparative empirical evaluation of representative algorithms selected from these four classes. Quantitative (detection and discrimination accuracy) and qualitative metrics (scene and object independence, flexibility to shadow situations and robustness to noise) are proposed to evaluate these classes of algorithms on a benchmark suite of indoor and outdoor video sequences. These video sequences and associated “ground-truth” data are made available at http://cvrr.ucsd.edu:88/aton/shadow to allow for others in the community to experiment with new algorithms and metrics. Keywords— Shadow detection, performance evaluation, dynamic scene analysis, object detection, tracking, segmentation, traffic scene analysis, visual surveillance
منابع مشابه
Detecting Moving Shadows: Algorithms and Evaluation
Moving shadows need careful consideration in the development of robust dynamic scene analysis systems. Moving shadow detection is critical for accurate object detection in video streams, since shadow points are often misclassified as object points causing errors in segmentation and tracking. Many algorithms have been proposed in the literature that deal with shadows. However, a comparative eval...
متن کاملDetecting Moving Shadows: Formulation, Algorithms and Evaluation
Moving shadows need careful consideration in the development of robust dynamic scene analysis systems. Moving shadow detection is critical for accurate object detection in video streams, since shadow points are often misclassified as object points causing errors in segmentation and tracking. Many algorithms have been proposed in the literature that deal with shadows. However, a comparative eval...
متن کاملShadow Detection Algorithms for Traffic Flow Analysis: a Comparative Study
Shadow detection is critical for robust and reliable vision-based systems for traffic flow analysis. In this paper we discuss various shadow detection approaches and compare two critically. The goal of these algorithms is to prevent moving shadows being misclassified as moving objects (or parts of them), thus avoiding the merging of two or more objects into one and improving the accuracy of obj...
متن کاملShadow detection: A survey and comparative evaluation of recent methods
This paper presents a survey and a comparative evaluation of recent techniques for moving cast shadow detection. We identify shadow removal as a critical step for improving object detection and tracking. The survey covers methods published during the last decade, and places them in a feature-based taxonomy comprised of four categories: chromacity, physical, geometry and textures. A selection of...
متن کاملAnalysis and Detection of Shadows in Video Streams: A Comparative Evaluation
Robustness to changes in illumination conditions as well as viewing perspectives is an important requirement for many computer vision applications. One of the key factors in enhancing the robustness of dynamic scene analysis is that of accurate and reliable means for shadow detection. Shadow detection is critical for correct object detection in image sequences. Many algorithms have been propose...
متن کامل